Что такое адф

Синтез АТФ в клетке

Что такое адф

Аденозинтрифосфорная кислота-АТФ – обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура.

В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии.

В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).

Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко.

Биология в таблицах. М.,2000)

АДФ

Следовательно, АТФ – своеобразный аккумулятор энергии в клетке, который “разряжается” при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток.

Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.

АТФ синтезируется в митохондриях в несколько этапов. Первый из них – подготовительный – протекает ступенчато, с вовлечением на каждой ступени специфических ферментов.

При этом сложные органические соединения расщепляются до мономеров: белки – до аминокислот, углеводы – до глюкозы, нуклеиновые кислоты – до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии.

Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.

Схема Синтез АТФ в мвтохондрии клетки

ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ

I этап – подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия. Белки ->аминокислоты

Жиры-> глицерин и жирные кислоты

Крахмал ->II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза: У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение): У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты. III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 –>3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых – синтез АТФ. Эти реакции идут в такой последовательности:

1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е–>H+

 2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е–>O2-

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны водородаH+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф–>АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02:

( 4Н++202- –>2Н20+02)

Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:

(2СзНбОз + 6Oз + 36АДФ + 36Ф —> 6С02 + 36АТФ + +42Н20)

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе – 2 АТФ и на III этапе – 36 АТФ.

Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия.

Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.

Источник: https://www.examen.ru/add/manual/school-subjects/natural-sciences/biology/uchenie-o-kletke/sintez-atf-v-kletke/

Разница между АДФ и АТФ

Что такое адф

АТФ и АДФ являются молекулами, содержащими большое количество запасенной химической энергии. Аденозиновая группа АДФ и АТФ состоит из аденина, хотя они также содержат фосфатные группы. Химически АТФ означает Аденозин трифосфат и ADP обозначает Аденозин ди фосфат.

Третий фосфат АТФ присоединен к двум другимфосфатные группы с очень высокой энергетической связью, и большое количество энергии выделяется, когда эта фосфатная связь разрывается. АДФ приводит к удалению третьей фосфатной группы из АТФ.

Это ключевое различие между АТФ и АДФ, Однако по сравнению с АТФ молекула АДФ обладает гораздо меньшей химической энергией, поскольку связь между двумя последними фосфатами при высокой энергии была нарушена. Основываясь на молекулярной структуре АТФ и АДФ, они имеют свои собственные АДФ.

В этой статье давайте рассмотрим, в чем различия между ATP и ADP.

Что такое трифосфат аденозина (АТФ)

Аденозинтрифосфат (АТФ) используется биологическими существами в качестве кофермента внутриклеточной химической передачи энергии в клетках для метаболизма. Другими словами, это основная молекула энергоносителя, используемая в живых существах.

АТФ образуется в результате фотофосфорилирования, аэробного дыхания и ферментации в биологических системах, что способствует накоплению фосфатной группы в молекуле АДФ.

Он состоит из аденозина, который состоит из аденинового кольца и рибозного сахара и трех фосфатных групп, также известных как трифосфат. Биосинтез АДФ в результате,

1. Гликолиз

Глюкоза + 2NAD + + 2 Pi + 2 ADP = 2 пируват + 2 ATP + 2 NADH + 2 H2О

2. Брожение

Глюкоза = 2CH3СН (ОН) СООН + 2 АТФ

Что такое аденозин ди фосфат (АДФ)

ADP состоит из аденозина, который состоит из аденинового кольца и рибозного сахара и двух фосфатных групп, также известных как дифосфат. Это жизненно важно для потока энергии в биологических системах.

Он генерируется в результате дефосфорилирования молекулы АТФ ферментами, известными как АТФазы. Расщепление фосфатной группы из АТФ приводит к выделению энергии для метаболических реакций.

Название ADP для ИЮПАК представляет собой [(2R, 3S, 4R, 5R) -5- (6-аминопурин-9-ил) -3,4-дигидроксиоксолан-2-ил] метилфосфоногидрофосфат. ADP также известен как 5'-дифосфат аденозина.

АТФ и АДФ могут иметь существенно разные физические и функциональные характеристики. Их можно разделить на следующие подгруппы,

Сокращение

ATP: Аденозин трифосфат

АДФ: Аденозин ди фосфат

Молекулярная структура

ATP:АТФ состоит из аденозина (адениновое кольцо и рибозный сахар) и трех фосфатных групп (трифосфат).

АДФ: АДФ состоит из аденозина (адениновое кольцо и рибозный сахар) и двух фосфатных групп.

Количество фосфатных групп

ATP: АТФ имеет три фосфатные группы.

АДФ: ADP имеет две фосфатные группы.

Химическая формула

ATP: Его химическая формула C10ЧАС16N5О13п3.

АДФ: Его химическая формула C10ЧАС15N5О10п2.

Молярная масса

ATP: Молярная масса составляет 507,18 г / моль.

АДФ: Молярная масса составляет 427.201 г / моль.

плотность

ATP: Плотность АТФ составляет 1,04 г / см.3.

АДФ: Плотность ADP составляет 2,49 г / мл.

Энергетическое состояние молекулы

ATP: АТФ является высокоэнергетической молекулой по сравнению с АДФ.

АДФ: АДФ представляет собой низкоэнергетическую молекулу по сравнению с АТФ.

Механизм высвобождения энергии

ATP: АТФ + H2O → АДФ + Pi ΔG˚ = −30,5 кДж / моль (−7,3 ккал / моль)

АДФ: ADP + H2O → AMP + PPi

Функции в биологической системе

ATP:

  • Метаболизм в клетках
  • Аминокислотная активация
  • Синтез макромолекул, таких как ДНК, РНК и белок
  • Активный транспорт молекул
  • Поддержание клеточной структуры
  • Способствовать клеточной сигнализации

АДФ:

  • Катаболические пути, такие как гликолиз, цикл лимонной кислоты и окислительное фосфорилирование
  • Активация тромбоцитов крови
  • Играть роль в митохондриальном комплексе АТФ-синтазы

В заключение, молекулы АТФ и АДФ являются типами «универсального источника энергии», и ключевым отличием между ними является количество фосфатной группы и содержание энергии.

В результате они могут иметь существенно разные физические свойства и разные биохимические роли в организме человека.

Как АТФ, так и АДФ участвуют в важных биохимических реакциях в организме человека, и поэтому они рассматриваются как жизненно важные биологические молекулы.

Рекомендации:

Voet D, Voet JG (2004). Биохимия 1 (3-е изд.). Хобокен, Нью-Джерси: Wiley. ISBN 978-0-471-19350-0.

Ronnett G, Kim E, Landree L, Tu Y (2005). Метаболизм жирных кислот в качестве мишени для лечения ожирения. Physiol Behav 85 (1): 25–35.

Беленький П., Боган К.Л., Бреннер С. (январь 2007). НАД + обмен веществ в норме и патологии. Тенденции биохимии. Sci. 32 (1): 12–9.

Дженсен Т.Е., Рихтер Е.А. (2012). Регуляция метаболизма глюкозы и гликогена во время и после тренировок. J. Physiol. (Лонд.) 590 (Часть 5): 1069–76.

Ресетар А.М., Чалович Ю.М. (1995). Аденозин 5 '- (гамма-тиотрифосфат): аналог АТФ, который следует использовать с осторожностью в исследованиях сокращения мышц. биохимия 34 (49): 16039–45.

Изображение предоставлено:

«Аденозин-дифосфат-3D-шарики» Джинто (доклад) – собственная работа Это химическое изображение было создано с помощью Discovery Studio Visualizer. (CC0) через

Источник: https://ru.strephonsays.com/difference-between-adp-and-atp

Структура АТФ. Значение АТФ

Что такое адф

На рисунке представлены два способа изображения структуры АТФ. Аденозинмонофосфат (АМФ), аденозиндифосфат (АДФ) и аденозинтрифосфат (АТФ) относятся к классу соединений, называемых нуклеогидами.

Молекула нук-леотида состоит из пятиуглеродного сахара, азотистого основания и фосфорной кислоты. В молекуле АМФ сахар представлен рибо-зой, а основание — аденином.

В молекуле АДФ две фосфатные группы, а в молекуле АТФ — три.

Значение АТФ

При расщеплении АТФ на АДФ и неорганический фосфат (Фн) высвобождается энергия:

Реакция идет с поглощением воды, т. е. представляет собой гидролиз (в нашей статье мы много раз встречались с этим весьма распространенным типом биохимических реакций). Отщепившаяся от АТФ третья фосфатная группа остается в клетке в виде неорганического фосфата (Фн). Выход свободной энергии при этой реакции составляет 30,6 кДж на 1 моль АТФ.

Из АДФ и фосфата может быть вновь синтезирован АТФ, но для этого требуется затратить 30,6 кДж энергии на 1 моль вновь образованного АТФ.

В этой реакции, называемой реакцией конденсации, вода выделяется. Присоединение фосфата к АДФ называется реакцией фосфорилирования. Оба приведенных выше уравнения можно объединить:

Катализирует данную обратимую реакцию фермент, называемый АТФазой.

Всем клеткам, как уже было сказано, для выполнения их работы необходима энергия и для всех клеток любого организма источником этой энергии служит АТФ. Поэтому АТФ называют «универсальным носителем энергии» или «энергетической валютой» клеток. Подходящей аналогией служат электрические батарейки.

Вспомните, для чего только мы их не используем. Мы можем получать с их помощью в одном случае свет, в другом звук, иногда механическое движение, а иногда нам нужна от них собственно электрическая энергия.

Удобство батареек в том, что один и тот же источник энергии — батарейку — мы можем использовать для самых разных целей в зависимости от того, куда мы ее поместим. Эту же роль играет в клетках АТФ.

Он поставляет энергию для таких различных процессов, как мышечное сокращение, передача нервных импульсов, активный транспорт веществ или синтез белков, и для всех прочих видов клеточной активности. Для этого он должен быть просто «подключен» к соответствующей части аппарата клетки.

Аналогию можно продолжить. Батарейки требуется сначала изготовить, а некоторые из них (аккумуляторные) так же, как и АТФ, можно перезарядить. При изготовлении батареек на фабрике в них должно быть заложено (и тем самым израсходовано фабрикой) определенное количество энергии.

Для синтеза АТФ тоже требуется энергия; источником ее служит окисление органических веществ в процессе дыхания. Поскольку для фосфорилирования АДФ энергия высвобождается в процессе окисления, такое фосфорилирование называют окислительным. При фотосинтезе АТФ образуется за счет световой энергии. Этот процесс называют фотофос-форилированием (см. разд. 7.6.2).

Есть в клетке и «фабрики», производящие большую часть АТФ. Это митохондрии; в них размешаются химические «сборочные линии», на которых образуется АТФ в процессе аэробного дыхания.

Наконец, в клетке происходит и перезарядка разрядившихся «аккумуляторов»: после того как АТФ, высвободив заключенную в нем энергию, превратится в АДФ и Фн, он может быть вновь быстро синтезирован из АДФ и Фн за счет энергии, полученной в процессе дыхания от окисления новой порции органических веществ.

Количество АТФ в клетке в любой данный момент очень невелико. Поэтому в АТФ следует видеть только носителя энергии, а не ее депо.

Для длительного хранения энергии служат такие вещества, как жиры или гликоген. Клетки весьма чувствительны к уровню АТФ.

Как только скорость его использования возрастает, одновременно возрастает и скорость процесса дыхания, поддерживающего этот уровень.

Роль АТФ в качестве связующего звена между клеточным дыханием и процессами, идущими с потреблением энергии, видна из рисунка Схема эта выглядит простой, но она иллюстрирует очень важную закономерность.

Можно, таким образом, сказать, что в целом функция дыхания заключается в том, чтобы вырабатывать АТФ.

Суммируем вкратце сказанное выше. 1. Для синтеза АТФ из АДФ и неорганического фосфата требуется 30,6 кДж энергии на 1 моль АТФ. 2. АТФ присутствует во всех живых клетках и является, следовательно, универсальным носителем энергии. Другие носители энергии не используются.

Это упрощает дело — необходимый клеточный аппарат может быть более простым и работать более эффективно и экономно. 3. АТФ легко доставляет энергию в любую часть клетки к любому нуждающемуся в энергии процессу. 4. АТФ быстро высвобождает энергию. Для этого требуется всего лишь одна реакция — гидролиз. 5.

Скорость воспроизводства АТФ из АДФ и неорганического фосфата (скорость процесса дыхания) легко регулируется в соответствии с потребностями.

6.

АТФ синтезируется во время дыхания за счет химической энергии, высвобождаемой при окислении таких органических веществ, как глюкоза, и во время фотосинтеза — за счет солнечной энергии. Образование АТФ из АДФ и неорганического фосфата называют реакцией фос-форилирования.

Если энергию для фос-форилирования поставляет окисление, то говорят об окислительном фосфорилиро-вании (этот процесс протекает при дыхании), если же для фосфорилирования используется световая энергия, то процесс называют фотофосфорилированием (это имеет место при фотосинтезе).

– Также рекомендуем “Дыхательные субстраты клетки. Основные реакции клеточного дыхания.”

Оглавление темы “Энергообмен клетки.”:
1. Использование энергии. Понятие о дыхании.
2. Структура АТФ. Значение АТФ.
3. Дыхательные субстраты клетки. Основные реакции клеточного дыхания.
4. Гликолиз. Что такое гликолиз?
5. Аэробное дыхание. Особенности аэробного дыхания. Цикл Кребса.
6. Дыхательная цепь и окислительное фосфорилирование.
7. Анаэробное дыхание. Характеристика анаэробного дыхания.
8. Сравнение аэробного и анаэробного дыхания.
9. Кислородная задолженность и непосредственный эффект от мышечной нагрузки.
10. Гликоген и молочная кислота. Система гликоген-молочная кислота.

Источник: https://meduniver.com/Medical/Biology/202.html

Свободные нуклеотиды: цамф и цгмф, атф, адф, фад, над. Строение, функции

Что такое адф

Циклический аденозинмонофосфат (цамф) — производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану. Превращает ряд инертных белков в ферменты (цамф-зависимые протеинкиназы), под действием которых происходит ряд биохим. реакций (проведение нервного импульса).

Образование цАМФ стимулируется адреналином.

Циклический гуанозинмонофосфат (цГМФ) – это циклическая форма нуклеотида, образующаяся из гуанозинтрифосфата (GTP) ферментом гуанилатциклазой. Образование стимулируется ацетилхолином.

· цГМФ вовлечен в регуляцию биохимических процессов в живых клетках в качестве вторичного посредника (вторичного мессенджера). Характерно, что многие эффекты цГМФ прямо противоположны цАМФ.

· цГМФ активирует G-киназу и фосфодиэстеразу, гидролизующую цАМФ .

· цГМФ принимает участизе в регуляции клеточного цикла . От соотношения цАМФ/цГМФ зависит выбор клетки: прекратить деление (остановиться в G0 фазе) или продолжить, перейдя в фазу G1.

· цГМФ стимулирует пролиферацию клеток (деление), а цАМФ подавляет

Аденозинтрифосфат (АТФ) – нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты.

Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями. Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии.

В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) и высвобождается порция энергии.

· Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

· АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

· АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.

· Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях

Аденозиндифосфат (АДФ) — нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты. АДФ участвует в энергетическом обмене во всех живых организмах, из него образуется АТФ путём фосфорилирования:

АДФ + H3PO4 + энергия → АТФ + H2O.

Циклическое фосфорилирование АДФ и последующее использование АТФ в качестве источника энергии образуют процесс, составляющий суть энергетического обмена (катаболизма).

ФАД — флавинадениндинуклеотид — кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. ФАД существует в двух формах — окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.

Никотинамидадениндинуклеотид (НАД) –динуклеотид, состоит из двух нуклеотидов, соединённых своими фосфатными группами. Один из нуклеотидов в качестве азотистого основания содержит аденин, другой — никотинамид. Никотинамидадениндинуклеотид существует в двух формах: окисленной (NAD) и восстановленной (NADH).

· В метаболизме NAD задействован в окислительно-восстановительных реакциях, перенося электроны из одной реакции в другую. Таким образом, в клетках NAD находится в двух функциональных состояниях: его окисленная форма, NAD+, является окислителем и забирает электроны от другой молекулы, восстанавливаясь в NADH, который далее служит восстановителем и отдаёт электроны.

· 1. Метаболизм белков, жиров и углеводов. Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях

· при синтезе и окислении жирных кислот,

· при синтезе холестерола,

· обмена глутаминовой кислоты и других аминокислот,

· обмена углеводов: пентозофосфатный путь, гликолиз,

· окислительного декарбоксилирования пировиноградной кислоты,

· цикла трикарбоновых кислот.

· 2. НАДН выполняет регулирующую функцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот.

· 3. Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК, что замедляет некробиоз и апоптоз клеток.

· 4. Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки.



Источник: https://infopedia.su/17x3c28.html

Атф мышц

Что такое адф

Дано определение АТФ, описана история открытия АТФ, содержание АТФ в мышечных волокнах, приведена структура АТФ, описаны реакции гидролиза и ресинтеза АТФ в мышечных волокнах

Что такое АТФ?

АТФ (аденозинтрифосфат, аденозинтрифосфорная кислота) – основное макроэргическое соединение организма[1]. Состоит из аденина (азотистого основания), рибозы (углевод) и трех последовательно расположенных фосфатных остатков, причем второй и третий фосфатные остатки присоединяются макроэргической связью. Структура АТФ выглядит следующим образом (рис.1).

Рис. 1. Структура АТФ

История открытия АТФ

АТФ был открыт(а) в 1929 году немецким биохимиком Карлом Ломаном (Karl Lohmann) и, независимо  Сайрусом Фиске (Cyrus Fiske) и Йеллапрагада Субба Рао (Yellapragada Subba Rao) из Гарвардской медицинской школы.

Однако структура АТФ была установлена только спустя несколько лет. Владимир Александрович Энгельгардт в 1935 году показал, что для сокращения мышц необходимо присутствие АТФ. В 1939 году В. А. Энгельгардт совместно со своей женой  М. Н.

Любимовой предъявили доказательства, что  миозин проявляет  ферментную активность при этом расщепляется АТФ и высвобождается энергия. Фриц Альберт Липманн (Fritz Albert Lipmann) в 1941 году показал, что АТФ является основным переносчиком энергии в клетке.

Ему принадлежит фраза «богатые энергией фосфатные связи». В 1948 году Александр Тодд (Alexander Todd) (Великобритания) синтезировал АТФ.  В 1997 году Пол Д. Бойер (Paul D. Boyer) и Джон Э. Уокер (John E.

Walker) получили Нобелевскую премию по химии за разъяснение ферментативного механизма, лежащего в основе синтеза АТФ.

АТФ в мышечных волокнах

Количество АТФ в тканях организма человека относительно невелико, поскольку он (она) в тканях не запасается. В мышечных волокнах содержится  5 ммоль на кг сырой ткани или 25 ммоль на кг сухой мышечной ткани.

Реакция гидролиза

Непосредственным источником энергии при мышечной деятельности является АТФ, который (ая) находится в саркоплазме мышечных волокон. Освобождение энергии происходит в результате реакции гидролиза АТФ.

Гидролиз АТФ – реакция, протекающая в мышечных волокнах, при которой АТФ, взаимодействуя с водой распадается на АДФ и фосфорную кислоту. При этом выделяется энергия. Гидролиз АТФ ускоряется ферментом АТФ-азой. Этот фермент находится на каждой миозиновой головке толстого фитламента.

Реакция гидролиза АТФ имеет следующий вид:

АТФ+Н2О→АДФ+Н3РО4 + энергия

В результате гидролиза 1 моль АТФ выделяется энергия, равная 42-50 кДж (10-12 ккал).  Скорость протекания реакции гидролиза повышают ионы кальция. Следует отметить, что АДФ (аденозиндифосфат) в мышечных волокнах выполняет роль универсального акцептора (приёмника) высокоэнергетического фосфата и используется для образования АТФ.

Фермент АТФ-аза

Фермент АТФ-аза расположен на миозиновых головках, что играет существенную роль в сокращении мышечных волокон. Активность фермента АТФ-азы лежит в основе классификации мышечных волокон на медленные (I тип), промежуточные (IIA тип) и быстрые (IIB тип).

Химическая энергия, выделяемая в результате гидролиза в мышечных волокнах, расходуется на: сокращение мышечных волокон (взаимодействие белков актина и миозина) и на их расслабление (работу кальциевого и натрий-калиевого насосов). При взаимодействии с актином одна молекула миозина за одну секунду гидролизует 10 молекул АТФ.

Запасы АТФ в мышечных волокнах невелики и могут обеспечить выполнение интенсивной работы в течение 1-2 с. Дальнейшая мышечная деятельность осуществляется благодаря быстрому восстановлению (ресинтезу) АТФ, поэтому при сокращении мышечных волокон в них одновременно протекают два процесса: гидролиз АТФ, дающий необходимую энергию и ресинтез АТФ, восполняющий запасы АТФ в мышечных волокнах.

Ресинтез АТФ

Ресинтез АТФ – синтез АТФ в мышечных волокнах из различных энергетических субстратов во время физической работы. Его формула выглядит следующим образом:

АДФ+фосфат+энергия → АТФ

Ресинтез АТФ может осуществляться двумя путями:

  • без участия кислорода (анаэробный путь);
  • с участием кислорода (аэробный путь).

Если в саркоплазме мышечных волокон недостаточно АТФ, то затрудняется процесс их расслабления. Возникают судороги.

Более подробно строение и функции мышц описаны в моих книгах “Гипертрофия скелетных мышц человека” и “Биомеханика мышц”

Литература

  1. Михайлов С.С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
  2. Волков Н.И., Несен Э.Н., Осипенко А.А., Корсун С.Н. Биохимия мышечной деятельности.- Киев: Олимпийская литература, 2000.- 504 с.

С уважением, А.В.Самсонова

[1] Макроэргические соединения – химические соединения, содержащие связи, при гидролизе которых происходит освобождение значительного количества энергии.

Источник: https://allasamsonova.ru/atf-myshc/

Строение и функции АТФ. урок. Биология 10 Класс

Что такое адф

Тема: Основы цитологии

Урок: Строение и функции АТФ

Как вы помните, нуклеиновые кислотысостоят из нуклеотидов. Оказалось, что в клетке нуклеотиды могут находиться в связанном состоянии или в свободном состоянии. В свободном состоянии они выполняют ряд важных для жизнедеятельности организма функций.

К таким свободным нуклеотидам относится молекула АТФ или аденозинтрифосфорная кислота (аденозинтрифосфат). Как и все нуклеотиды, АТФ состоит из пятиуглеродного сахара – рибозы, азотистого основания – аденина, и, в отличие от нуклеотидов ДНК и РНК, трех остатков фосфорной кислоты (рис. 1).

Рис. 1. Три схематических изображения АТФ

Важнейшая функция АТФ состоит в том, что она является универсальным хранителем и переносчиком энергии в клетке.

Все биохимические реакции в клетке, которые требуют затрат энергии, в качестве ее источника используют АТФ.

При отделении одного остатка фосфорной кислоты, АТФ переходит в АДФ (аденозиндифосфат). Если отделяется ещё один остаток фосфорной кислоты (что случается в особых случаях), АДФ переходит в АМФ (аденозинмонофосфат) (рис. 2).

Рис. 2. Гидролиза АТФ и превращение её в АДФ

При отделении второго и третьего остатков фосфорной кислоты освобождается большое количество энергии, до 40 кДж. Именно поэтому связь между этими остатками фосфорной кислоты называют макроэргической и обозначают соответственным символом.

При гидролизе обычной связи выделяется (или поглощается) небольшое количество энергии, а при гидролизе макроэргической связи выделяется намного больше энергии (40 кДж). Связь между рибозой и первым остатком фосфорной кислоты не является макроэргической, при её гидролизе выделяется всего 14 кДж энергии.

Макроэргические соединения могут образовываться и на основе других нуклеотидов, например ГТФ (гуанозинтрифосфат) используется как источник энергии в биосинтезе белка, принимает участие в реакциях передачи сигнала, является субстратом для синтеза РНК в процессе транскрипции, но именно АТФ является наиболее распространенным и универсальным источником энергии в клетке.

АТФ содержится как в цитоплазме, так и в ядре, митохондриях и хлоропластах.

Таким образом, мы вспомнили, что такое АТФ, каковы её функции, и что такое макроэргическая связь.

Витамины – биологически активные органические соединения, которые в малых количествах необходимы для подержания процессов жизнедеятельности в клетке.

Они не являются структурными компонентами живой материи, и не используются в качестве источника энергии.

Большинство витаминов не синтезируются в организме человека и животных, а поступают в него с пищей, некоторые синтезируются в небольших количествах микрофлорой кишечника и тканями (витамин D синтезируется кожей).

Потребность человека и животных в витаминах не одинакова и зависит от таких факторов как пол, возраст, физиологическое состояние и условия среды обитания. Некоторые витамины нужны не всем животным.

Например, аскорбиновая кислота, или витамин С, необходим человеку и другим приматам. Вместе с тем, он синтезируется в организме рептилий (моряки брали в плавания черепах, для борьбы с цингой – авитаминозом витамина С).

Витамины были открыты в конце XIX века благодаря работам русских ученых Н. И. Лунина и В. Пашутина, которые показали, что для полноценного питания необходимо не только наличие белков, жиров и углеводов, но и ещё каких-то других, на тот момент неизвестных, веществ.

В 1912 году польский ученый К. Функ (Рис. 3), изучая компоненты шелухи риса, предохраняющей от болезни Бери-Бери (авитаминоз витамина В), предположил, что в состав этих веществ обязательно должны входить аминные группировки. Именно он предложили назвать эти вещества витаминами, то есть аминами жизни.

В дальнейшем было установлено, что многие из этих веществ аминогрупп не содержат, но термин витамины хорошо прижился в языке науки и практики.

По мере открытия отдельных витаминов, их обозначали латинскими буквами и называли в зависимости от выполняемых функций. Например, витамин Е назвали токоферол (от др.-греч. τόκος – «деторождение», и φέρειν – «приносить»).

Рис. 3. Автор термина «витамин»

Сегодня витамины делят по их способности растворяться в воде или в жирах.

К водорастворимым витаминам относят витамины H, C, P, В.

К жирорастворимым витаминам относят A, D, E, K(можно запомнить, как слово: кеда).

Как уже было отмечено, потребность в витаминах зависит от возраста, пола, физиологического состояния организма и среды обитания. В молодом возрасте отмечена явная нужда в витаминах. Ослабленный организм тоже требует больших доз этих веществ. С возрастом способность усваивать витамины падает.

Потребность в витаминах также определяется способностью организма их утилизировать.

В 1912 году польский ученый Казимир Функ получил из шелухи риса частично очищенный витамин B1 – тиамин. Ещё 15 лет понадобилось для получения этого вещества в кристаллическом состоянии.

Кристаллический витамин B1 бесцветен, обладает горьковатым вкусом и хорошо растворим в воде. Тиамин найден как в растительных, так и микробных клетках. Особенно много его в зерновых культурах и дрожжах (рис. 4).

Рис. 4. Тиамин в виде таблеток и в продуктах питания

Термическая обработка пищевых продуктов и различные добавки разрушают тиамин. При авитаминозе наблюдаются патологии нервной, сердечно-сосудистой и пищеварительной систем. Авитаминоз приводит к нарушению водного обмена и функции кроветворения. Один из ярких примеров авитаминоза тиамина – это развитие болезни Бери-Бери (рис. 5).

Рис. 5. Человек, страдающий от авитаминоза тиамина – болезни бери-бери

Витамин В1 широко применяется в медицинской практике для лечения различных нервных заболеваний, сердечно-сосудистых расстройств.

В хлебопечении тиамин вместе с другим витаминами – рибофлавином и никотиновой кислотой используется для витаминизации хлебобулочных изделий.

В 1922 году Г. Эванс и А. Бишо открыли жирорастворимый витамин, названный ими токоферолом или витамином Е (дословно: «способствующий родам»).

Витамин Е в чистом виде – маслянистая жидкость. Он широко распространен в злаковых культурах, например в пшенице. Его много в растительных, животных жирах (рис. 6).

Рис. 6. Токоферол и продукты, которые его содержат

Много витамина E в моркови, в яйцах и молоке. Витамин E является антиоксидантом, то есть защищает клетки от патологического окисления, которое приводит их к старению и гибели. Он является «витамином молодости». Огромно значение витамина для половой системы, поэтому его часто называют витамином размножения.

Вследствие этого, дефицит витамина Е, в первую очередь, приводит к нарушению эмбриогенеза и работы репродуктивных органов.

Производство витамина Е основано на выделении его из зародышей пшеницы – методом спиртовой экстракции и отгонки растворителей при низких температурах.

В медицинской практике используют как природные, так и синтетические препараты – токоферолаацетат в растительном масле, заключенный в капсулу (знаменитый «рыбий жир»).

Препараты витамина Е используются как антиоксиданты при облучениях и других патологических состояниях, связанных с повышенным содержанием в организме ионизированных частиц и активных форм кислорода.

Кроме того, витамин Е назначают беременным женщинам, а также используют в комплексной терапии лечения бесплодия, при мышечной дистрофии и некоторых заболеваниях печени.

Витамин А (рис. 7) был открыт Н. Друммондом в 1916 году.

Этому открытию предшествовали наблюдения за наличием жирорастворимого фактора в пище, необходимого для полноценного развития сельскохозяйственных животных.

Витамин А недаром занимает первое место в витамином алфавите. Он участвует практически во всех процессах жизнедеятельности. Этот витамин необходим для восстановления и сохранения хорошего зрения.

Он также помогает вырабатывать иммунитет ко многим заболеваниям, в том числе и простудным.

Без витамина А невозможно здоровое состояние эпителия кожи. Если у вас «гусиная кожа», которая чаще всего появляется на локтях, бедрах, коленях, голенях, если появилась сухость кожи на руках или возникают другие подобные явления, это означает, что вам недостает витамина А.

Витамин А, как и витамин Е, необходим для нормального функционирования половых желез (гонад). При гиповитаминозе витамина А отмечено повреждение репродуктивной системы и органов дыхания.

Одним из специфических последствий недостатка витамина А является нарушение процесса зрения, в частности снижение способности глаз к темновой адаптации – куриная слепота.

Авитаминоз приводит к возникновению ксерофтальмии и разрушению роговицы. Последний процесс необратим, и характеризуется полной потерей зрения.

Гипервитаминоз приводит к воспалению глаз и нарушению волосяного покрова, потери аппетита и полному истощению организма.

Рис. 7. Витамин А и продукты, которые его содержат

Витамины группы А, в первую очередь, содержатся в продуктах животного происхождения: в печени, в рыбьем жире, в масле, в яйцах (рис. 8).

Рис. 8. витамина А в продуктах растительного и животного происхождения

В продуктах растительного происхождения содержатся каротиноиды, которые в организме человека под действием фермента каротиназы переходят в витамин А.

Таким образом, Вы познакомились сегодня со структурой и функциями АТФ, а также вспомнили о значении витаминов и выяснили, как некоторые из них участвуют в процессах жизнедеятельности.

При недостаточном поступлении витаминов в организм развивается первичный авитаминоз. Разные продукты содержат разное количество витаминов.

Например, морковь содержит много провитамина А (каротина), капуста содержит витамин С и т. д. Отсюда проистекает необходимость сбалансированной диеты, включающей в себя разнообразные продукты растительного и животного происхождения.

Авитаминоз при нормальных условиях питания встречается очень редко, гораздо чаще встречаются гиповитаминозы, которые связаны с недостаточным поступлением с пищей витаминов.

Гиповитаминоз может возникать не только в результате несбалансированного питания, но и как следствие различных патологий со стороны желудочно-кишечного тракта или печени, или в результате различных эндокринных или инфекционных заболеваний, которые приводят к нарушению всасывания витаминов в организме.

Некоторые витамины вырабатываются кишечной микрофлорой (микробиотой кишечника). Подавление биосинтетических процессов в результате действия антибиотиков может также привести к развитию гиповитаминоза, как следствия дисбактериоза.

Чрезмерное употребление пищевых витаминных добавок, а также лекарственных средств, содержащих витамины, приводит к возникновению патологического состояния – гипервитаминоза. Особенно это характерно для жирорастворимых витаминов, таких как A, D, E, K.

Домашнее задание

1. Какие вещества называют биологически активными?

2. Что такое АТФ? В чем особенность строения молекулы АТФ? Какие типы химической связи существуют в этой комплексной молекуле?

3. Каковы функции АТФ в клетках живых организмов?

4. Где происходит синтез АТФ? Где осуществляется гидролиз АТФ?

5. Что такое витамины? Каковы их функции в организме?

6. Чем витамины отличаются от гормонов?

7. Какие классификации витаминов вам известны?

8. Что такое авитаминоз, гиповитаминоз и гипервитаминоз? Приведите примеры этих явлений.

9. Какие заболевания могут быть следствием недостаточного или избыточного поступления витаминов в организм?

10. Обсудите с друзьями и родственниками свое меню, подсчитайте, пользуясь дополнительной информацией о содержании витаминов в разных продуктах питания, достаточно ли витаминов вы получаете.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

2. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

3. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

4. Вся биология (Источник).

5. Гугл (Источник).

6. Интернет-портал Ducksters (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с. 

3. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник: https://interneturok.ru/lesson/biology/10-klass/bosnovy-citologii-b/stroenie-i-funktsii-atf?block=player

УмныйКардиолог
Добавить комментарий