Образуют антитела эритроциты или лейкоциты

Кровь: состав и функции, постоянство внутренней среды. Иммунная система

Образуют антитела эритроциты или лейкоциты

Кровеносная, она же сердечно-сосудистая система обеспечивает циркуляцию крови и лимфы в организме человека. Среди всех органов тела только поверхность глаз может получать кислород непосредственно из воздуха. Все остальные органы и ткани, даже кожа, получают кислород с током крови.

Кровь относится к соединительной ткани, клетки в ней занимают гораздо меньший объем, чем межклеточное вещество. Кровь состоит из жидкости с растворенными веществами (плазмы) и форменных элементов: лейкоцитов, эритроцитов и тромбоцитов.

Плазма крови образует внутреннюю среду организма: жидкость из крови «выдавливается» в ткани и становится тканевой жидкостью, избыток тканевой жидкости попадает в лимфатические сосуды, становясь лимфой.

Лимфа в итоге попадает в кровоток, возвращая жидкость в кровь.

Плазма крови содержит 0,9% хлорида натрия (поваренная соль), поэтому для внутривенных вливаний используют водный 0,9% раствор NaCl («физиологический», или изотонический раствор). Другие соли и органические вещества в сумме занимают около 9% массы плазмы. Большую роль играют белки плазмы, особенно альбумины.

Для поддержания постоянной кислотности в плазме присутствуют буферные системы. Водородный показатель крови человека (pH) в среднем равен 7,4. При его смещении в кислотную или основную сторону происходят химические реакции в буферных системах, которые уравновешивают изменения кислотности.

Поддерживать постоянство внутренней среды (гемостаз) необходимо для нормальной жизни клеток. Клеточная мембрана проницаема для молекул воды, поэтому если снаружи концентрация раствора повышается (гипертонический раствор), вода стремится выйти из клетки по закону осморегуляции. Клетка при этом скукоживается, становится неправильной формы, многие ее органеллы перестают правильно работать.

Если же концентрация соли в окружающем растворе слишком мала (гипотонический раствор), вода стремится внутри клетки, чтобы «разбавить» ее содержимое. В этом случае клетки разбухают, мембрана может не выдержать и лопнуть. Таким образом, изменение солености крови может привести к необратимым изменениям в организме.

Клетки составляют около 45% объема крови. Выделяют «белую» кровь – лейкоциты и «красную» кровь – эритроциты. Эритроциты имеют небольшой размер и двояковогнутую дисковидную форму. Такая форма дает большую площадь поверхности при минимальном объеме, что повышает эффективность газообмена. Эритроциты человека не имеют ядра, они теряют его в процессе созревания.

Эритроциты

В 1 мл крови содержится 4-6 млн эритроцитов. Их главная функция – перенос кислорода, за это отвечает крупный белок – гемоглобин. Одна молекула гемоглобина состоит из четырех полипептидных цепей (глобина) и железосодержащих групп (гема).

Каждая молекула гемоглобина может перенести четыре молекулы кислорода, причем способность связывать и отдавать кислород зависит от условий среды: в более щелочной среде (легких) гемоглобин лучше связывает кислород, в то время как в более кислой среде (тканях), он лучше отдает его.

Механизм действия гемоглобина

Помимо кислорода с гемоглобином могут связываться другие газы, самым опасным из которых является угарный (СО). Он образуется при неполном сгорании органики в условиях нехватки кислорода и не имеет цвета и запаха.

Сродство гемоглобина к угарному газу гораздо выше, чем к кислороду, поэтому, однажды связавшись с гемоглобином, угарный газ будет еще долго циркулировать в крови. При этом свободных сайтов связывания кислорода станет меньше и ткани начнут страдать от его нехватки.

Тяжелое отравление угарным газом требует немедленной специализированной помощи.

Лейкоциты

Лейкоциты являются основой клеточного иммунитета, это сферические клетки с достаточно крупным ядром. 1 мл крови содержит 4-11 тысяч лейкоцитов. Из всех клеток организма они наиболее уязвимы к действию радиации.

В зависимости от свойств лейкоциты делятся на несколько типов: содержащие гранулы, или гранулоциты (эозинофилы, нейтрофилы, базофилы) и не содержащие – агранулоциты.

Тромбоциты

Также кровь содержит тромбоциты, которые представляют собой отшнуровавшиеся куски гигантской клетки.

Сами тромбоциты клетками не являются, они выглядят как мелкие пластинки неправильной формы и содержат только цитоплазму с гранулами.

В гранулах находятся ферменты свертывающей системы, которые активируются при повреждении сосуда: образуется сгусток крови (тромб), который закупоривает поврежденный участок. 1 мл крови содержит 200-500 тысяч тромбоцитов.

Начало всем форменным элементам крови дают стволовые клетки красного костного мозга. Клетки крови постоянно обновляются, но у разных типов клеток обновление происходит с разной периодичностью. Эритроциты могут циркулировать 120-130 суток, в то время как лейкоциты и тромбоциты обычно живут не дольше 5-7 суток.

Иммунитет

Иммунная система защищает организм от воздействия бактерий, вирусов, грибов и паразитов, вредных веществ. В случае сбоя в работе иммунитета могут возникать аутоиммунные заболевания, в организме человека есть несколько механизмов, чтобы их предотвратить.

Органы, участвующие в формировании иммунитета

Основными органами иммунной системы являются селезенка, тимус (вилочковая железа) и костный мозг, где появляются и начинают созревать иммунные клетки. Клетки иммунитета циркулируют с кровью, располагаются в лимфоузлах и тканях, особенно много их в местах контакта с внешней средой (кожа, ЖКТ, дыхательные пути).

Некоторые органы защищены от иммунного ответа барьерами, они называются иммунологически привилегированными органами. Это мозг, камеры глаза, семенники, плацента и плод и т.д.

При травмах иммунологически привилегированных органов, когда нарушается целостность барьера, могут возникнуть аутоиммунные реакции.

Макрофаги

Другие клетки неспецифического иммунитета, которые первыми отвечают на воздействие, – макрофаги.

Это крупные клетки, которые способны к активному передвижению и фагоцитозу, они пожирают бактерии и инородные тела.

Самостоятельно распознавать чужеродные белки макрофаги не способны, их действие не избирательно. «Ориентируют» макрофагов на уничтожение конкретных клеток антитела.

Макрофаг, фагоцитирующий бактерии.

Другими клетками иммунитета являются нейтрофилы и эозинофилы. Они, как и макрофаги, являются фагоцитами (то есть способны к фагоцитозу). Кроме того, в их цитоплазме есть гранулы с едкими веществами, которые высвобождаются при активации клетки.

Запускается каскад химических реакций, в ходе которых образуются активные формы кислорода, это называется кислородным взрывом. Нейтрофилы и эозинофилы, а также окружающие здоровые клетки тоже погибают в результате кислородного взрыва, их остатки фагоцитируют макрофаги.

Эозинофилы играют основную роль в развитии аллергий.

Нейтрофил, эозинофил, базофил

Фагоциты способны к направленному движению (хемотаксису), их можно обнаружить во многих тканях и органах, даже на поверхности кожи.

Благодаря их постоянной активности большая часть атакующих агентов не вызывает инфекции, то есть системного ответа организма.

Инфекция возникает в том случае, если иммунитет ослаблен (переутомление, переохлаждение, голодание и т.д.) или если инфекционный агент не был вовремя распознан фагоцитами.

Различают два вида иммунитета: клеточный и гуморальный. Гуморальный иммунитет – это система комплемента и циркулирующие с плазмой крупные молекулы – антитела.

Белки системы комплемента «помечают» чужеродные агенты, вызывая направленное движение клеток иммунитета. Также система комплемента может формировать поры в мембране бактерий, что будет вести к их разрушению.

Антитела

Каждое антитело имеет на конце вариабельные домены (участки), комплементарные к чужеродному белку и специфические для конкретного возбудителя.

Они прикрепляются к комплементарным участкам белков, «помечая» их для других клеток иммунного ответа, например, для фагоцитов.

Также антитела могут слипаться между собой, что вызывает агглютинацию возбудителя. Особенно эффективны антитела против бактерий.

На рисунке изображены молекулы антител. Каждая состоит из двух пар цепей, синим цветом нарисованы тяжелые цепи, коричневым – легкие.

Клеточный иммунитет состоит из Т и В-лимофцитов. Т-лимофоциты могут быть двух видов: Т-хелперы и Т-киллеры.

Т-киллеры клетки-убийцы, они запускают процессы апоптоза, то есть запрограммированной гибели клеток, их самоуничтожения.

Это необходимо, если клетки организма заражены вирусами или бактериями или если при делении в геноме появились мутации (то есть Т-киллеры борются также с раковыми клетками).

В-лимфоциты синтезируют антитела и таким образом управляют гуморальным иммунитетом. При миграции В-клеток из крови в ткань они дифференцируются в плазматические клетки.

Лимфоциты действуют избирательно, они «настроены» на уничтожение возбудителя с конкретными антигенами. Чтобы правильно «настроить» лимфоциты, нужны антиген-презентирующие клетки (АПК).

АПК фагоцитируют чужеродных агентов и выставляют на своей поверхности участки их молекул в комплексе с МНС II (главный комплекс гистосовместимости II).

Т-хелперы способны распознавать чужие молекулы на поверхности АПК и активировать иммунный ответ.

Специфический иммунитет очень эффективен, но требует времени на развертывание. От попадания возбудителя в кровь до выработки антител может пройти несколько дней.

К неспецифическому иммунитету относят в основном фагоциты, которые пытаются поглотить или разрушить любое инородное тело или подозрительную клетку, которую встречают.

Немаловажную роль в иммунной защите организма играет воспаление. Это сложный стадийный процесс, который имеет следующие признаки: отек, местное повышение температуры, покраснение, боль и утрата функции органа.

Благодаря отеку затрудняется распространение возбудителей по организму, место проникновения ограничивается. При повышении температуры повышается активность некоторых белков гуморального иммунитета, в то время как активность бактерий и скорость их размножения снижаются.

Воспалительный процесс особенно эффективен против паразитов.

N-киллеры (натуральные киллеры), как и Т-киллеры могут запускать процессы клеточной гибели. Однако они, в отличии от Т-клеток, не требуют специальной подготовки – презентации антигена и активации. N-киллеры хорошо борются с опухолями.

Интерфероны – белки крови, которые составляют основу противовирусного гуморального иммунитета.

Вирусы проникают в клетки организма, после чего здоровые клетки перестают синтезировать необходимые белки и начинают воспроизводить белки и генетическую информацию вирусов.

Чтобы остановить распространение вирусных частиц и выиграть время на формирование специфического иммунитета, интерфероны замедляют или даже останавливают синтез белка в зараженных клетках.

Неспецифический иммунитет не требует времени на развертывание, его действие начинается уже в первые минуты после воздействия. Однако и точность неспецифического иммунитета низкая, при развитии иммунного ответа могут страдать здоровые клетки.

Синтез клеток специфического иммунитета (лимфоцитов) включает в себя элемент случайности, только так можно достигнуть неимоверного разнообразия иммунных клеток.

Чтобы в кровоток не выходили клетки, которые способны атаковать собственный организм, они проходят строгий отбор в органах иммунной системы, где происходит созревание лимфоцитов (тимус, лимфоузлы).

Если в результате отбора оказывается, что юный лимфоцит распознает клетки своего организма в качестве «врагов», в нем запускается процесс апоптоза, самоуничтожения.

Группы крови. Гемотрансфузия

На поверхности эритроцитов могут находиться белки-агглютиногены А и В. В зависимости от того, какие агглютиногены есть в организме, выделяют: I группу крови (без агглютиногенов), II (только А), III (только В) и IV (оба агглютиногена).

При гемотрансфузии (переливании крови) необходимо учитывать группу, чтобы избежать возникновения иммунного конфликта.

Если человеку с I группой крови перелить любую другую, клетки его иммунитета распознают чужеродные белки-агглютиногены и выработают антитела.

В результате все чужие эритроциты «слипнутся» (агглютинируют), что может быть очень опасно для организма хозяина. Поэтому людям с I группой крови можно переливать только кровь такой же группы.

Если же перелить кому-нибудь эритроциты I группы крови, не имеющие белков-агглютиногенов, реакции иммунитета не последует. Можно сказать, что обладатели I группы самые «щедрые», потому что могут поделиться своей кровью со всеми. Также их называют универсальными донорами.

Обратная ситуация с IV группой: в крови таких людей нет антител ни к агглютиногену А, ни к агглютиногену В, поэтому им можно перелить кровь любой группы.

Однако при попадании эритроцита группы IV в организм с другой группой произойдет агглютинация, поэтому обладателей IV группы крови можно назвать самыми «жадными» или универсальными реципиентами.

Соответственно, II группу крови нельзя перелить обладателю III и наоборот.

Помимо агглютиногенов А и В существует много других белков, которые могут привести к возникновению иммунного конфликта. Международное общество трансфузиологов в настоящее время признает всего 36 систем деления крови на группы. Наиболее часто применяют систему АВО, в которой также учитывают резус-фактор. Впервые этот белок был описан у макак-резусов, за что и получил свое название.

Большая часть людей резус-положительна (Rh+), то есть имеет на эритроцитах белок-резус. Им можно переливать кровь с любым резусом. Людям же с резус-отрицательной кровью (Rh-) можно переливать только резус-отрицательную кровь.

Резус-фактор может стать причиной резус-конфликта между матерью и плодом. Если у резус-отрицательной матери будет резус-положительный ребенок, то при попадании крови плода в кровоток матери сформируются антитела к Rh+ белку.

Чаще всего смешение крови происходит при родах и не несет опасности для ребенка. Если же антитела каким-то образом появились до родов, они могут проникнуть через плаценту и вызвать агглютинацию эритроцитов плода, что приведет к его гибели.

Такая опасность часто возникает при повторной беременности резус-отрицательных женщин.

Распространенность групп крови варьирует в разных популяциях. На картинке приведена частота встречаемость разных групп по системе АВО в мире.

Распространенность групп крови

Источник: https://spadilo.ru/krov-immunnaya-sistema/

Про эритроциты, лейкоциты, тромбоциты | Университетская клиника

Образуют антитела эритроциты или лейкоциты

Общеизвестно, что основными клетками крови являются эритроциты, лейкоциты и тромбоциты. Приглядимся к ним поближе.

Эритроциты — строение и функции

Эритроциты — это основная часть состава клеток крови. Количество их у здоровых людей колеблется от 4,5 до 5,5 миллиона в 1 куб.мм. Если расположить их все в одну линию, то она протянется на 187000 км, более чем в 4,5 раза больше земного экватора. Ежесекундный распад 10 миллионов эритроцитов возмещается поступлением в кровь такого же их количества из кроветворных органов.

Эритроциты человека — безъядерные тельца, похожие на двояковогнутые диски, с диаметром, равным в среднем 7 микронам (0,007 мм).

По современным представлениям эритроцит имеет губчатую структуру, пропитанную гемоглобином — носителем кислорода. В составе эритроцитов его более 90%.

Из гемоглобина и кислорода (Нв) образуется непрочный оксигемоглобин. Именно из-за него кровь такого цвета. Основная часть его состава белковая — глобин и небелковая — гем. Успехи современной биохимии позволили изучить этапы его образования, очень сложного и многоступенчатого. Гем способствует гемоглобину “рыхло” соединяться с кислородом, этим он обязан железу, которое присутствует в нем.

Связи кислорода и гемоглобина целиком зависит от содержания (концентрации, или «напряжения») этого газа в окружающей среде. Если раствор гемоглобина окружен воздухом, содержащим 20% кислорода, то гемоглобин почти полностью насытится кислородом, т. е. превратится в оксигемоглобин.

Но если его поместить в безвоздушное пространство или атмосферу азота, то кислород полностью отщепится и гемоглобин окажется восстановленным.

Как эритроциты переносят гемоглобин в организме

Проходя через капилляры легких, где имеется наибольшее напряжение кислорода, гемоглобин крови целиком насыщается кислородом. Этот процесс совершается по законам диффузии газов.

Затем оксигемоглобин переносится в капилляры других тканей организма, где напряжение кислорода очень низкое благодаря чему он легко отделяется от гемоглобина. Освободившийся кислород используется клетками для поддержания их энергетического обмена.

Отечественный ученый П. А. Коржуев на примерах особей животного мира различного уровня развития показал, что расстановка разных видов животных в эволюционном ряду зависит от обеспеченности их гемоглобином (следовательно, и кислородом).

  • Так, например, у рыб на килограмм веса тела гемоглобина сравнительно немного;
  • У земноводных (следующая ступень развития) немного больше;
  • Еще больше его у птиц и т. д.
  • Самое большое его количество содержит кровь млекопитающих.

Что происходит с погибшими эритроцитами

Основная задача эритроцитов — переноска кислорода. Они обладают минимальным обменом веществ. В среднем они живут 100—120 дней. Старея, эритроциты подвергаются распаду: в конце своей жизни в селезенке, и печени приклеиваются к особым клеткам на стенках сосудов.

Такие клетки обладают способностью захватывать различные высокомолекулярные и чужие частицы, попадающие в кровь. Этот процесс поглощения (фагоцитоз) распространяется также и на состарившиеся эритроциты, которые для организма стали уже чужеродными.

Непосредственное отношение к процессу кроворазрушения имеет селезенка. Этот орган — «губчатый мешок» из очень рыхлой ткани, переполненной кровью, способен разрушать красные кровяные тельца, что дало повод уже давно называть ее «кладбищем» этих клеток. (По некоторым данным, свыше 70% всех эритроцитов, закончивших свой жизненный цикл, оказываются именно в ней).

Следует отметить, что у здорового человека селезенка разрушает лишь старые или случайно поврежденные красные тельца. Каков же механизм освобождения крови от тех из них, что уже отжили или повреждены? Это удалось открыть с помощью интересных опытов на животных с использованием современной электронной микроскопии.

Крысам вводили токсические для эритроцитов вещества и наблюдали прохождение их через стенку сосудов селезенки. Нормальные клетки легко фильтруются через сосудистые поры: при прохождении через них «гибкие» эритроциты меняют свою форму и проскальзывают в общем токе крови.

Но, старея или повреждаясь, становясь менее эластичными они больше неспособны проникать через капилляры, фильтруются в селезенке и поглощаются (фагоцитоз) ретикуло-эндотелиальными клетками. При распаде в печени эритроцитов образуется пигмент билирубин, который в кишечнике, под влиянием микробов подвергается дальнейшему химическому превращению.

При этом образуется пигмент стеркобилин, который окрашивает кал таким коричневым цветом. Количество этого пигмента в кале говорит об объемах распадающихся эритроцитов.

Нормы эритроцитов по полу и возрасту

Пол, возрастНорма, клеток/л
У взрослых мужчин3.9•10 12 –5,5•10 12
У взрослых женщин3,9•10 12 –4,7•10 12
В пуповинной крови плода3,9•10 12 –5,5•10 12
1-3 дня от рождения4,0•10 12 –6,6•10 12ретикулоциты — 3–51%
7 дней3,9•10 12 –6,3•10 12
14 дней3,6•10 12 –6,2•10 12
30 дней3,0•10 12 –5,4•10 12
60 дней2,7•10 12 –4,9•10 12
6 месяцев3,1•10 12 –4,5•10 12ретикулоциты — 3–15%
до 12 лет3,5•10 12 –5,0•10 12ретикулоциты — 3–12%
Девочки-подростки 13–19 лет3,5•10 12 –5,0•10 12ретикулоциты 2-11%
Мальчики-подростки 13–16 лет4,1•10 12 –5,5•10 12ретикулоциты 2-11%
16 — 19 лет3,9•10 12 –5,6•10 12
Пожилые люди4,0•10 12
Беременные3,5•10 12 –5,6∙10 12ретикулоциты — примерно 1%

Что происходит с железом, накопившемся в эритроцитах

Сейчас сложилось твердое убеждение, что железо, освободившееся при гибели эритроцитов, полностью используется для построения его новых молекул, предварительно отложившись в печени и селезенке в резерве. Из резерва оно в костном мозге принимает участие в гемоглобинообразовании.

Помимо использования резервного железа, открыт механизм непосредственной утилизации гемоглобинового железа кроветворными клетками.

Здоровый человек ежесуточно при распаде эритроцитов теряет 20—30 мг железа, что равно суточной потребности. 90% этого железа вновь идет на построение нового гемоглобина в процессе созревания новых эритроцитов. Потери железа организмом ничтожны.

Лейкоциты — строение и функции

Лейкоциты — вторая основная составляющая крови, имеют ядро, протоплазму, или цитоплазму (от «цито» — клетка). Отдельные из них способны активно двигаться, наподобие простейших организмов, например, амеб.

В крови человека содержится в 1000 раз меньше лейкоцитов, чем эритроцитов.

Виды лейкоцитов

Лейкоциты бывают зернистыми и незернистыми. Зернистые лейкоциты или гранулоциты имеют протоплазму нагруженную зернами. Незернистые лейкоциты или агранулоциты зерен не содержат или содержат очень мало.

Незернистые и зернистые лейкоциты отличаются друг от друга несколькими признаками:

  • способностью восприятия клетками кислых и щелочных красок;
  • отсутствием или наличием зерен в цитоплазме;
  • отличием в строении ядра;
  • формой.

Так, например, цитоплазма эозинофила в окрашенном мазке содержит крупную зернистость, напоминающую кетовую икру, а базофильные лейкоциты имеют зерна, окрашивающиеся в фиолетово-синий цвет.

Ядра различных клеток имеют своеобразную форму, позволяющую отличать одни от других. Ядро зрелого нейтрофила, например, состоит из сегментов, соединенных между собой мостиками, а у лимфоцита ядро круглое и занимает большую часть клетки.

Защитная функция лейкоцитов

Некоторые формы лейкоцитов (прежде всего нейтрофилы и моноциты) поразительно способны к фагоцитозу, т. е. к поглощению и перевариванию различных микробов; простейших организмов, отживших клеток и всяких чужеродных веществ, попадающих в организм.

Присущая лейкоцитам защитная функция проявляется лишь после выхода из кровеносных сосудов. При кровотоке лейкоциты обволакивают внутренние стены капилляров и во множестве уходят из сосудов, протискиваясь между эндотелиальными клетками. При своем следовании они обнаруживают и переваривают в себе микробы и различные инородные тела.

Процесс движения лейкоцитов из сосудов в ткани совершается при посредстве вытягивания протоплазмы и образования ее выростов — так называемых ложноножек (псевдоподий). Лейкоциты активно проходят через неповрежденные стенки сосудов, легко проникают через оболочки (мембраны), двигаются в соединительной ткани.

Роль эозинофилов и базофилов остается еще недостаточно изученной. Больше сведений мы имеем в отношении лимфоцитов. Они образуются в лимфатических узлах, разбросанных по всему организму и в селезенке.

(Количество лимфоидной ткани составляет около 1% веса тела!) Изучение продолжительности жизни лимфоцитов с использованием радиоактивной метки доказало, что они циркулируют в крови 100—200 дней, и лишь небольшая их часть исчезает из кровяного русла через 3—4 дня.

Есть основания считать, что лимфоциты участвуют в формировании иммунной системы организма и, таким образом, очень важны в процессах борьбы с микробами и действием их токсинов.

Нормы лейкоцитов по полу и возрасту

Пол, возрастНорма,  единиц на литр (Ед/л)
Малыши до 3-х дней7 – 32 × 109
До 1 года6 – 17,5 × 109
1-2 года6 – 17 × 109
2-6 лет5 – 15,5 × 109
6-16 лет4,5 – 13,5 × 109
16-21 год4,5 – 11 × 109
Взрослые мужчины4,2 – 9 × 109
Взрослые женщины3,98 – 10,4 × 109
Пожилые мужчины3,9 – 8,5 × 109
Пожилые женщины3,7 – 9 × 109

Тромбоциты — строение и функции

В крови есть еще третий форменный элемент—тромбоциты (кровяные пластинки).

Тромбоциты, как бы осколки протоплазмы производящих их гигантских клеток костного мозга — мегакариоцитов. Оказывается, что из одного мегакариоцита может образоваться до 400 пластинок. В 1 мм3 крови их насчитывается 250—400 тыс.

Размер кровяных пластинок очень мал — от 2 до 5 микрон. Они формой круглые или овальные, не имеют ядра. Сроки пребывания их в крови от 3 до 5 дней.

Клетки эти играют огромную роль в процессах свертывания крови и занимают ключевую позицию в процессе остановки кровотечения.

Основное, значимое свойство тромбоцитов — прилипать и покрывать чужеродную поверхность. Они при этом становятся больше размером и растягиваются принимая звездчатую форму. При повреждении мелких кровеносных сосудов тромбоциты устремляются к месту повреждения, прилипают кучкой и образуют собой тромб закрывающий место дефекта сосуда.

Вокруг него оседают нити фибрина и эритроциты, цвет тромба меняется на красный. Благодаря выпадению фибрина головка тромба плотно фиксируется к поврежденному сосуду и задерживает переход крови из сосуда наружу.

Таким образом, тромбоциты успешно организуют первичный, «пусковой» этап остановки кровотечения при повреждении сосуда. Поэтому при заболеваниях, которым свойственно отсутствие, малое количество или неполноценность тромбоцитов, наблюдаются самопроизвольные кровотечения и кровоизлияния.

Нормы тромбоцитов по полу и возрасту

Пол, возрастНорма тромбоцитов, тысяч Ед/мкл
У мужчин200-400
У женщин180-320
У женщин в критические дни75-220
У беременных100-310
У новорожденных100-420
2 недели -1 год150-350
1 – 5 лет180-380
5 – 7 лет180-450

ссылкой:

Источник: https://unclinic.ru/kletki-krovi-jeritrocity-lejkocity-trombocity/

Форменные элементы крови: эритроциты, тромбоциты, лейкоциты

Образуют антитела эритроциты или лейкоциты

Форменные элементы крови обеспечивают ее многофункциональность

Форменные элементы обеспечивают многоплановость функций крови. Они создают защиту организма от болезнетворных микробов, транспортируют кислород и полезные вещества, очищают кровеносную систему и забирают продукты распада, восстанавливают повреждённые ткани и препятствуют потере крови, останавливая кровотечения.

Все элементы зарождаются в костном мозге из единой стволовой клетки. По мере развития клетки дифференцируются и трансформируются в один из видов форменных элементов: эритроциты, тромбоциты и лейкоциты.

В совокупности составляют 40 — 48% от объёма крови, остальные 52 — 60% приходятся на плазму. Соотношение общего числа форменных элементов именуют гематокритом.

Иногда гематокрит высчитывают по количеству только эритроцитов, так как они являются основными клеточными элементами крови.

Эритроциты: строение и функции

Красные кровяные тельца — эритроциты

Эритроциты (RBC) представляют собой безъядерные клетки двояковогнутой округлой формы. Диаметр развитой клетки составляет около 7 — 8 мкм, толщина — 2,2 мкм по краям и 1 мкм в центральной части. Форма и строение клетки обуславливают оптимальное выполнение эритроцитами своих функций.

Вогнутая форма увеличивает поверхность эритроцита в 1,7 раз по сравнению с шаровидной клеткой, а также позволяет перемещаться по тончайшим капиллярам — проникая в узкие сосуды, эритроциты способны вытягиваться и скручиваться.

Ядро утрачивается по мере взросления клетки, освобождая место для молекул гемоглобина.

Эритроциты слаженно передвигаются по кровеносному руслу, выстраиваясь в виде столбиков, концы которых соединены друг с другом, образуя кольца, что облегчает движение крови.

Каждая клетка содержит около 300 миллионов молекул гемоглобина, которые обратимо связываются с кислородом, чтобы затем отдать его тканям различных органов. Гемоглобин является сложным белком, содержащим 574 аминокислоты и состоящим из 4 субъединиц.

Каждая из них включает гем — комплекс железа, который обеспечивает красный цвет клетки, а совокупность эритроцитов придаёт красный цвет крови.

функция эритроцитов заключается в транспортировке кислорода и выведению из тканей углекислого газа. Снижение числа кровяных телец, изменение их формы и гибкости вследствие различных заболеваний приводят к нехватке гемоглобина и кислородному голоданию всех органов.

Эритроциты принимают участие в иммунных реакциях и поддержании кислотно-щелочного равновесия, транспортируют питательные вещества.

Также эти клетки несут на своей поверхности около 400 антигенов, первостепенное значение имеют антигены систем групп крови, то есть антигены II, III, IX групп крови и резус-фактор.

Лейкоциты: строение и функции

Белые кровяные тельца — лейкоциты

Лейкоциты (WBC) — это группа клеток, каждая из которых выполняет специализированную защитную функцию. Лейкоциты содержат ядра, в состав клеток входят гидролитические ферменты, система синтеза белка, биологически активные соединения и другие органоиды.

Лейкоциты обладают способностью мигрировать сквозь сосудистую стенку, устремляясь к чужеродным частицам, чтобы захватить их и уничтожить. Разрушение вредоносных клеток осуществляется лейкоцитами при помощи процесса фагоцитоза — поглощения и переваривания.

Лейкоциты включают в себя 5 групп защитных клеток.

1. Базофилы (BAS). Составляют всего 1% от числа всех лейкоцитов. Это клетки округлой формы, их диаметр составляет примерно 12 — 15 мкм.

Базофилы содержат гранулы неправильной формы, в состав которых входят гистамин, гепарин, серотонин, простагландин и другие вещества.

При необходимости базофильные лейкоциты высвобождают содержимое своих гранул, участвуя в аллергических реакциях, блокировании ядов, защите сосудов от образования тромбов, привлечении других клеток-помощников в очаг воспаления.

2. Эозинофилы (EOS). Их число в составе лейкоцитов также невелико — от 1 до 4%. Клетки обладают округлой формой, ядро образует 2 сегмента, соединённые перемычкой. Диаметр составляет около 12 — 17 мкм.

Гранулы эозинофилов содержат коллагеназу, эластазу, пероксидазу, кислую фосфатазу, простагландины, щелочной протеин и т.д.

Эозинофилы способны прикрепляться к паразитам и вводить ферменты из своих гранул в цитоплазму вредоносных организмов, растворяя их оболочку.

Агранулоцитарные лейкоциты — лимфоциты

3. Лимфоциты (LYM). Составляют около 30% от лейкоцитов, являются главными иммунными клетками. Лимфоциты — это форменные элементы сферической формы, большинство из них представляют собой малые клетки с тёмным ядром, диаметром 5 — 7 мкм. Крупные лимфоциты обладают бобовидным ядром, их диаметр превышает 10 мкм. Эти клетки функционально подразделяются на виды:

  • В-лимфоциты. Формируют антитела против вредоносных агентов.
  • Т-киллеры уничтожают болезнетворные клетки (паразитарные, вирусные, опухолевые).
  • Т-хелперы помогают в процессах пролиферации и дифференцировки лимфоцитов, способствуют выработке антител.
  • Т-супрессоры приостанавливают работу Т-хелперов, когда это необходимо.
  • Т-памяти «записывают» информацию о проникших в организм микробах, чтобы при новой атаке вредных микроорганизмов направить против них соответствующие антитела.
  • NK-лимфоциты разрушают аномальные клетки.

Палочкоядерный нейтрофил

4. Нейтрофилы (NEU). Самая многочисленная группа лейкоцитов, составляет до 75% от числа защитных клеток. Диаметр равен примерно 12 — 15 мкм, циркулируют в крови в виде двух подвидов:

  • Палочкоядерные. Являются незрелыми элементами, их ядра схожи на палочки, которые затем разделятся на сегменты, образуя следующий подвид.
  • Сегментоядерные. Их ядра сегментированы, содержат обычно 3 доли, связанные хроматиновыми нитями.

Нейтрофилы активно поглощают бактерии, грибы и некоторые вирусы. Они первыми устремляются к источнику инфекции, захватывают своими ложноножками патогенные частицы и помещают внутрь цитоплазмы, выделяя содержимое своих гранул. Их гранулы содержат коллагеназу, аминопептидазу, катионные белки, кислые гидролазы, лактоферрин.

Переварив вредоносные микроорганизмы, нейтрофилы обычно погибают, высвобождая в этот момент ряд веществ, которые способствуют угнетению оставшихся бактерий и грибов, а также усиливают процесс воспаления, что становится сигналом для других клеток иммунитета.

Масса погибших нейтрофилов, перемешавшись с клеточным детритом, представляет собой гной.

5. Моноциты (MON). Гранулы у данных лейкоцитов отсутствуют, их ядра могут быть представлены в виде овала, подковы, боба, а диаметр равен 12 — 20 мкм. Составляют около 4 — 10% от числа иммунных клеток.

Являются активными фагоцитами, способными поглощать крупные микроорганизмы, при этом после процесса переваривания обычно не погибают. Они остаются в месте воспаления и подчищают его, отделяя здоровые ткани от повреждённых.

Моноциты уничтожают как болезнетворные микробы, так и погибшие лейкоциты, способствуя последующей регенерации пострадавших тканей.

Тромбоциты: строение и функции

Красные кровяные пластинки — эритроциты

Тромбоциты (PLT) представляют собой пластинки диаметром 2 — 11 мкм. Эти клетки не содержат ядер, обладают округлой либо овальной формой. Но их форма меняется при возникновении кровотечения. Как только повреждается сосуд, тромбоцит обретает сферическую форму и выпускает ложноножки, при помощи которых он соединяется с иными тромбоцитами и агрегирует к месту повреждения.

Гранулы содержат необходимые для коагуляции элементы: факторы свёртывания, фибриноген, ионы кальция, а также фактор роста. Часть антикоагулянтов и факторов свёртывания могут находиться на поверхности пластинок.

Основная функция состоит в обеспечении целостности кровеносной системы за счёт процесса свёртывания. При повреждении стенки сосуда выделяется коллаген, к волокнам которого прилипают находящиеся рядом тромбоциты. Высвобождая содержимое гранул, тромбоциты запускают цепь реакций, благодаря которым образуется тромб, препятствующий кровопотере.

Помимо участия в системе гемостаза, тромбоциты способствуют регенерации тканей, выделяя из своих гранул факторы роста, при помощи которых происходит стимуляция пролиферации клеток. Ещё одна функция заключается в питании эндотелия сосудов кровеносной системы.

Нормы форменных элементов крови

Нормативные показатели, выраженные в абсолютных значениях.

Форменные элементыНорма
эритроциты4,0 – 5,5*1012/л
лейкоциты4,0 – 9,0*109/л
нейтрофилы палочкоядерные0,04 – 0,3*109/л
нейтрофилы сегментоядерные2,0 – 5,5*109/л
эозинофилы0,02 – 0,3*109/л
базофилы0,02 – 0,06*109/л
лимфоциты1,2 – 3,0*109/л
моноциты0,09 – 0,6*109/л
тромбоциты180 – 320*109/л

Подгруппы лейкоцитов в результатах анализа могут быть представлены в виде соотношения к общему числу лейкоцитов.

ЛейкоцитыСоотношение (%)
нейтрофилы палочкоядерные1 – 6
нейтрофилы сегментоядерные40 – 70
эозинофилы1 – 4
базофилы0,2 – 1
лимфоциты20 – 37
моноциты4 – 10

Источник: https://gidanaliz.ru/fiziologiya/formennye-elementy-krovii.html

Лейкоциты. Виды лейкоцитов. Количество лейкоцитов

Образуют антитела эритроциты или лейкоциты

Лейкоциты крупнее эритроцитов и содержатся в крови в гораздо меньшем количестве (примерно 7000 в 1 мм3 крови). Они играют важную роль в защите организма от болезней. Каждый лейкоцит имеет ядро.

Несмотря на наличие ядра, продолжительность их жизни в кровотоке обычно не превышает нескольких дней. Все они способны к амебоидному движению.

Это позволяет им протискиваться через стенки капилляров в области контакта клеток эндотелия и направляться к инфицированным тканям.

Лейкоциты можно видеть с помощью светового микроскопа только в том случае, если они окрашены. На окрашенных препаратах отчетливо выявляются две основные группы лейкоцитов — гранулоциты, или зернистые лейкоциты, содержащие в цитоплазме гранулы, и агрануло-циты, или незернистые лейкоциты, не имеющие таких гранул.

ГРАНУЛОЦИТЫ (72%). Эти клетки как и эритроциты образуются в костном мозге, но из других предшественников. Они характеризуются сегментированными ядрами довольно причудливой формы, поэтому называются также поли-морфноядерными (от греч. poly — много и morpha — форма) лейкоцитами. Среди них различают нейтрофилы, эозинофилы и базо-филы.

1. Нейтрофилы (фагоциты) составляют примерно 70% от общего числа лейкоцитов. Они способны протискиваться между клетками, образующими стенки капилляров и мигрировать по межклеточным пространствам различных тканей, направляясь к инфицированным участкам тела. Нейтрофилы активно фагоцитируют, т. е. поглощают и переваривают, болезнетворные бактерии (разд. 14.8.5).

2. Эозинофилы отличаются присутствием в цитоплазме гранул, окрашивающихся эозином в красный цвет.

Обычно на их долю приходится всего 1,5% от общего числа лейкоцитов, но при аллергических состояниях (например при астме или сенной лихорадке) их количество возрастает. Эозинофилы обладают антигистаминны-ми свойствами.

эозинофилов в крови регулируется гормонами, секре-тируемыми корой надпочечников в ответ на самые разнообразные стрессовые воздействия.

3. Базофилы составляют 0,5% обшей популяции лейкоцитов. При окрашивании этих клеток основными красителями, такими, например, как метиленовый синий, в них становятся заметными синие гранулы.

Базофилы синтезируют гепарин, белок, препятствующий свертыванию крови, и гистамин, инициирующий в частности воспалительную реакцию в поврежденных тканях, которая способствует их скорейшему заживлению.

При некоторых аллергических состояниях, например при сенной лихорадке, наблюдается чрезвычайно высокая секреция гистамина.

АГРАНУЛОЦИТЫ (28%). Эти клетки не содержат гранул в цитоплазме. Если у гранулоцитов ядро как бы состоит из нескольких частей, то здесь оно явно одно, овальное или бобовидное, в связи с чем эти лейкоциты называют мононуклеарными или одноядерными. Выделяют два основных типа незернистых лейкоцитов.

1. Моноциты (4%) образуются в костном мозге и содержат ядро бобовидной формы. В кровотоке они проводят всего 30-40 ч, а затем выходят в окружающие ткани, становясь макрофагами.

2. Макрофаги фагоцитируют бактерии и другие относительно крупные частицы. Как будет пояснено в нашей статье, они способствуют развитию иммунного ответа, связывая и преобразуя некоторые антигены. Вместе с нейтрофилами они образуют действующую по всему организму фагоцитарную систему, являющуюся первой линией обороны против инфекции.

3. Лимфоциты (24%) образуются в тимусе (вилочковой железе) и лимфоидной ткани из клеток костномозгового происхождения. Это сферические клетки с небольшим количеством цитоплазмы. Способность к амебоидному движению у них ограничена. Лимфоциты содержатся также в лимфе и других тканях тела.

Различают два их основных типа — Т- и В-лимфоци-ты (разд. 14.9). Они индуцируют иммунные реакции или участвуют в них (способствуют образованию антител, отторжению трансплантатов и уничтожению опухолевых клеток).

Продолжительность жизни отдельного лимфоцита широко варьирует — от считанных дней до десяти с лишним лет.

– Также рекомендуем “Тромбоциты. Кровообращение. Круги кровообращения.”

Оглавление темы “Кровеносная система.”:
1. Кровеносная система кольчатых червей, членистоногих и позвоночных.
2. Состав крови. Плазма. Эритроциты.
3. Лейкоциты. Виды лейкоцитов. Количество лейкоцитов.
4. Тромбоциты. Кровообращение. Круги кровообращения.
5. Кровеносные сосуды. Артерии. Артериолы. Капиляры.

Источник: https://meduniver.com/Medical/Biology/331.html

УмныйКардиолог
Добавить комментарий